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Abstract

i

A class of implicit Total Variation Diminishing (TVD) type algorithms suitable for transonic and

supersonic multidimensional Euler and Navier-Stokes equations has been extended to hypersonic

computations. The improved conservative shock-capturing schemes are spatially second- and third-

order, and are fully implicit. They can be first- or second-order accurate in time and are suitable

for either steady or unsteady calculations. Enhancement of stability and convergence rate for hyper-

sonic flows is discussed. With the proper choice of the temporal discretization and suitable implicit

linearization, these schemes are fairly efficient and accurate for very complex two-dimensional hy-

personic inviscid and viscous shock interactions. This study is conlplimented by a variety of steady

and unsteady viscous and inviscid hypersonic blunt-body flow computations. Due to the inherent

stiffness of viscous flow problems, numerical experiments indicated that the convergence rate is in

general slower for viscous flows than for inviscid steady flows.

I. Motivation and Objective

Most shock-capturing methods are either inefficient for practical computations or only valid for

transonic or supersonic perfect gas calculations. For hypersonic, perfect gas, equilibrium real gases or

nonequilibrium flow% improvement and modification to existing methods are necessary. In addition,

viscous hypersonic and nonequilibrium flow problems are generally stiff and implicit methods are

generally preferred over explicit methods. Some of the numerical issues for steady inviscid hypersonic

blunt-body flow computations were addressed in our earlier paper [1]. A semi-implicit method and

a fully implicit method for steady-state nonequilibrium flows were discussed in Yee and Shirm [2].
A basic study on numerical methods for unsteady inviscid nonequilibrium flows was presented in

LeVeque and Yee [3]. The objective of this research is to efficiently extend and improve as well as to

present an unified formulation of the existing implicit high-resolution shock-capturing schemes [4-6,2]

for multidimensional compressible Euler and Navier-Stokes equations in the hypersonic, perfect and

equilibrium real gas flow regimes.

tAn abbreviated version will appear in the proceedings of the BAIL V Conference, June 20-24, 1988, Shanghai, China.
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The improved schemes are based on a classof implicitTotal VariationDiminishing (TVD) type

algorithmsoriginallydesignedfortransonicand supersonicmultidimensionalELderand Navier-Stokes

equations[4-6].The extended conservativeshock-capturingschemes are spatiallysecond-and third-

order,and are and fullyimplicit.They can be first-or second-orderaccurateintime and are suitable

for eithersteady or unsteady calculations.In addition,the currentunifiedformulationallowsthe

inclusion of the MUSCL-type approach [7] in conjunction with a local characteristic approach [24,6]

or flux-vector splittings [8] (see section II for an explanation). For the present study, particular

emphasis is placed on second-order implicit time-accurate high-resolution algorithms. The algorithms
are formLdated in finite volume and pseudo finite volume forms which, for certain physical problems

and grid distributions, can enhance stability and convergence rate for highly clustered or skewed grids

and require only a slight modification from the form originally presented in Yee and Harten [5] for

generalized geometries. It is emphasized here that the use of the term TVD-type schemes pertains to

the property of the algorithm as applied to one-dimensional nonlinear scalar hyperbolic conservation
laws or constant coefficient hyperbolic systems in a semidiscrete sense. Theoretical justification of

the proposed fully discretized schemes on the preservation of TVD property for the general nonlinear

scalar hyperbolic conservation laws is under investigation. Moreover, the high-resolution property of
these schemes for multidimensional nonlinear systems of hyperbolic conservation laws is evaluated

by numerical experiments. In particular the following numerical issues are addressed:

1. Some numerical aspects of TVD-type schemes that affect the convergence rate for hypersonic

Mach numbers and real gas flows but have negligible effect on low Mach number or perfect gas flows

are identified.

2. The performance of the various linearized implicit forms of the proposed schemes similar to the

transonic flow study [4-6] is reexamined for hypersonic flows.

3. The behavior of the proposed schemes with various temporal, differencing but. similar spatial

discretization for inviscid and viscous flows is investigated. Studies indicated that their behavior in

terms of stability and convergence rate is quite different between viscous and inviscid flows. However,

with the proper choice of the temporal discretizatlon and suitable implicit linearization, these schemes

are fairly efficient and accurate for very complex two-dimensional hypersonic inviscid and viscous
shock interactions.

4. The relative efficiency and accuracy of typical TVD-type schemes [9-11] for shock wave compu-

tations are examined. A comparative study on steady and unsteady flows reveals that the proposed

class of TVD-type schemes, in particular, for equilibrium real gas and nonequllibrium flows, pro-

duces just as accurate shock resolution and yet requires less operations count than most other TVD

schemes (e.g., higher-order Godunov [10], Osher & Chakravarthy [9], and TVD flux-vector splitting

approaches [8]).

In the following section, the generalization of Roe's approximate Riemann solver and flux-vector

splitting for real gases are reviewed. A description of the two-parameter family implicit shock-
capturing scheme, the various enhancements on numerical stability and convergence rate for hy-

personic flows, and the behavior of the scheme for inviscid and viscous flows are discussed in the

subsequent sections. To illustrate the performance of the schemes for complex hypersonic flows, some

representative numerical examples are also discussed.

II. Description of the Numerical Algorithm

The conservationlawsforthe two-dimensionalNavier-Stokesequationscan be writtenin the form



!

i
|

=_

=

=_

where U : [ p, m, n, e ]T, F : [ pu, mu+p, nu, eu+pu ]T::G _ [ pv, my, nv+p, ev+pv ]r Fv

= [ 0, r_,=, r=_, f ]T, and Gv : [ 0, v_v, r_y, g iT. Here p is the density, u and v are the velocity

components, m = pu and n = pv are the z- and y-components of the momentum per unit volume, p

is the pressure, e pie+ ' 2 v _= _(u + )] is the total energy per unit volume, and e is the specific internal

energy. For a perfect gas, we also have

rxx =/z(4u= - 2v_)/3, (lb)

r_u =/_(uy + v_), (lc)

ruu =/_(-2u, + 4vu)/3, (ld)

Oa2 (le)
f = ur_ + Vrzy + ItPr-'(7 - 1)-' O-'-x-'

g = ur.y + vruu + #Pr-'(7 - 1)-' Oa--_-2 (If)
Oy '

where for example, uz is defined as Ou/Oz. The dynamic viscosity p is given by Sutherland's formula.

The Reynolds number is Re, the Prandtl number is Pr, the sound speed is a, and the ratio of specific

heats is 7.

Under a generalized coordinate transformation, _ = _(2,y) and 1/= T/(x,y), equation (1) can be

written in a form which maintains the strong conservation-law form as

where _) = U/J, F = (_a,F + _uG)/J, 5 = 07,F + _?ya)/J, F,, = (_,Fv + (uG,,)/J, 5,_ = (,l,F,., +

TlyG,,)/.], and J = (_qu - (_}x, the Jacobian transformation. Let A = OF/OU and B = OG/OU.

Then the Jacobians ,4 = 0F/0U and B = 0G/0U can be written as

.4 = (_xA + _uB) (3a)

g = (rl_.A + quB). (3b)

In this study the thin-laver Navier-Stokes approximation is assumed by dropping all the 0(.)/0_

derivatives in the viscous terms. Also, stability and convergence rate viscous results are for a perfect

gas and laminar flows with adiabatic wall conditions.

2.1. Riemann Solvers

Here the usual approach of applying the one-dimensional scalar TVD schemes via the so called

Riemann solvers for each direction in multidimensional nonlinear systems of hyperbolic conservation

laws (see for example reference [5,12]) is used. This approach is best suited for orthogonal or nearly

orthogonal grids. The eigenvalues and eigenvectors of the Jacobian matrices .4 and /_ are used in

approximate Riemann solvers. Given two states whose difference is AU, Roe [13] obtained an average

in the _-direction, for example, satisfying Ai _ = AAU for a perfect gas. The generalization by

Vinokur [14] for an arbitrary gas involves the pressure derivatives X = (ap/0p) 7 and r_ = (Op/O_ p,

where _" = pc. The relation c 2 = X + rh then gives the speed of sound, where h = e+p/p. Introducing

H = h + (u 2 + v2)/2, Vinokur found the same expressions for u,v and H as for the perfect gas, and

that _ and _ must satisfy

3



Unique values of _ and _ are obtained by projecting the proper averages of the values for the two

states into rids relation (see references [14,11,12,15] for the exact formulas).

Flux-vector splitting methods divide the flux F into several parts, each of which has a Jacobian

matrix whose eigenvalues are aU of one sign. The approach by Steger and Warming [16] made use

of the relation F = AU, valid for a perfect gas. Van Leer [17] constructed a different splitting in

which the eigenvalues of the spilt-flux Jacobians are continuous and one of them vanishes, leading

to sharper capture of transonic shocks. Vinokur and Montagn_ [18] showed that the expressions for

both these splittingscan be generalizedto an arbitrarygas by using the variable7 = Pc_/P,and

adding to the splitenergy fluxa term equal to the product of the splitmass fluxand the quantity

- c2/[7(7 - 1)](seereferences[18,11,12,15]forthe exact formulas).

The currentstudy on the shock resolutionof the variousschemes [1,4-6,9]for two-dimensional

steady-stateblunt-body inviscidcomputations indicatessimilartrendsas the one dimensionalstudy

[11].The main issueappears to be theirrelativeefficiency.Due to extraevaluationsper dimension

in the curve fittingbetween the leftand rightstatesin a realgas for the van Leer formulation,

additionalcomputation isrequiredforthe van Leertype schemes than the Harten and Yee [4,5,19],

and Yee [6]types of TVD schemes. Here van Leer type schemes referto the use of the MUSCL

approach [7](see section2.2 for an explanation)in conjunctionwith the Roe type approximate

Riemann solver[13]or flux-vectorsplittings[8](hereafterthe lattermethods are referredto as the

TVD flux-vectorsplittingmethods). Moreover, for steady-stateapplications,implicitmethods are

preferredover explicitmethods because of the fasterconvergencerate.In addition,itiseasierto

obtain a noniterativelinearizedimplicitoperator for the Harten and Yee, and Yee type schemes

than for the van Leer type schemes. Furthermore,unlikeflux-vectorsplittingapproaches,implicit

methods employing the Roe type approximate Riemann solver(non-MUSCL or MUSCL) with first-

order implicitoperators do not requirethe Jacobian of the F + and G _ fluxes.Here F ± isthe

portion of the fluxwith positive/negativeeigenvalues.In many instances,the Jacobiansof these

fluxesare relativelydifficultorexpensivetoobtain,inparticularfornonequilibriumflows.A similar

difficultyappliesto the MUS('L formulationsvia the Roe type approximate Riemann solverifa

spatiallysecond-orderimplicitoperatorisdesired.For thesereasons,the linearizedimplicitversions

of Harten and Yee [4]and Yee [6]are preferredover the van Leer type schemes. Consequently,

numerical studieson the extensionofthe former schemes to hypersonicflowsare emphasized. Some

of thesepointswillbecome more apparent when an unifiedformulationof theseimplicitmethods is

presentedin section2.2.An unifiedfornmlationof the correspondingexplicit_chemes can be found

in reference[12].

2.2 Description of the Implicit TVD schemes

In the application of TVD-type schemes for viscous flows, the physical problems considered here

are assumed to be inviscid dominated in the sense that moderate or strong shock waves are present

in the flow field such that high-resolution shock-capturing techniques are required. Thus the numer-

ical procedures used here for the compressible Navier-Stokes calculations are a second-order central

difference approximation for the diffusion terms and TVD-type schemes for the inviscid part of the

Navier-Stokes equations. The question of whether the present numerical dissipation term (due to

the TVD-type terms) has an adverse effect on the true viscosity terms in the boundary layer region

is not known at this point. What we can conclude from the current study is that the portions of the

solution slightly or far away from the boundary layer are quite accurately simulated.

The two-parameter fanfily of explicit and implicit high-resolution schemes presented here is based



ona semi-discrete methodology and on the one-parameter family of TVD-type algorithms developed

in references [19,4-6]. The idea is to use the same spatial discretization as references [19,4-6] for
the spatial derivatives and to use the two-parameter family of linear multistep methods for the time

derivatives. The original one-parameter family of TVD-type schemes is a subset of the two-parameter

family of algorithms. Mathematical analysis similar to that in [19,4-6] for the current larger family

of schemes is under investigation. For a particular chosen time differencing, these schemes are

TVD for the one-dimensional constant coefficient hyperbolic equations. Also the MUSCL approach

in conjunction with the Roe-type approximate Riemann solver [2] and TVD flux-vector splitting

methods [8] falls nicely into the present frame work. In other words, the present formulation includes
a larger class of spatial as well as temporal discretization than in references [19,4-6].

Also, the formulation is in finite volume and pseudo finite volume forms which can enhance stability

and convergence rate for highly clustered or skewed grids and is a slight modification from the form

originally presented in Yee and Harten [5] for generalized geometries. For fairly uniform or mildly

clustered grids, the present finite volume and pseudo finite volume forms behave the same as in

reference [5] for inviscid flows. This is in contrast to the study of Takakura et al. [20] which claimed

that their modified form [20] is the correct finite difference formulation for generalized geometries.

A comparison between Takakura et al. [20] and reference [5] on the same fairly uniform curvilinear

grid for a blunt-body computation shows no noticeable difference in resolution.

Without loss of generality, the two-parameter family of implicit schemes for the Euler equations

(F_ = G_ = 0) is presented here. For general Navier-Stokes equations, the appropriate three-point

central differences of the viscous Jacobian terms should be added to the implicit operator and a

central difference approximation for the diffusion terms should be added to the explicit operator.

Let At be the time step and let the grid spacing be denoted by A_ and Aq such that _ = jA_

and 77= kA_ 7. Also let _ At An at.= _ and = --a,' then a two-parameter family of explicit and implicit

TVD-type algorithms in generalized coordinates for two-dimensional systems (1) with F,, = Gv = 0
can be written as

(1 - o)A 
1 + w "-'_'j.k

(5)

Here A_.'_k : _+l _ U_,k- The functions _'j+ ½.k and (_.i.k+ ½ are the numerical fluxes in the _-
1 1

and r/-directions evaluated at (j + _,k) and (j,k + _), respectively. This two-parameter family
of algorithms contains first- and second-order implicit as well as explicit schemes. The scheme is

t
temporally second-order if 0 = ,_ + _- and first-order otherwise. When 0 # 0, algorithm (5) is an
implicit scheme. In this paper, only the temporally first-order backward Euler (0 = 1, w = 0) and the

temporally second-order three-point backward differentiation (0 = 1, ,, = 1/2) time-differencing are

investigated. Detailed formulation and numerical studies for algorithm (5) with ,o = 0 for transonic,

supersonic and hypersonic flows can be found in references [4-6,12,1,11,21,22]. The current study

shows that, for viscous steady and unsteady flows, the temporally second-order implicit algorithm

(0 = 1, w : 1/:2) appears to be slightly more stable and efficient than the temporally first-order

implicit algorithm (0 = 1, _ = 0).

The spatial accuracy of equation (5) depends on the form of the numerical flux functions. There

exists many ways to achieve higher-order spatial accuracy and at the same time have TVD-type

properties. Here two of the ways are discussed. The first is due to Harten [19], Roe [23], and

Yee-Roe-Davis [6,24,25], and the second, sometimes referred to as the MUSCL approach, is due to



van Leer [7].Followingthe same nomenclature as in references[11,12],hereafter,we referto the

firstway as the non-MUSCL approach. Besidesthe differenttemporallyimplicitdiscretization,the

combination ofthe two Riemann solversdiscussedinsection2.1and higher-orderspatialdifferencing

consideredyieldsthree differenttypes of spatialdifferencingfor the nonlinearsystem (I):namely,

non-MUSCL and MUSCL approachesusingan approximate Riemann solver,and a MUSCL approach

using flux-vectorspUttings(TVD flux-vectorsplittingmethods).

Non-MUSCL Approach Using an Approximate Riemann Solver:. The numerical flux function Fj+ ½,_.

for a non-MUSCL type approach, together with the local characteristic approach [4-6] (Roe type of

approximate Riemann solver) in a fi_nite volume formulation, cart be expressed as

Fj+- ½,k= _1[(_)7 j+½(FJ'k+FJ+lk)+(_)' J+](GJ'k+GJ+I'k)+Rj+½%J+½/JJ+½]"
(6a)

The corresponding pseudo finite volume formulation will be discussed in section 2.4. Here Rj+ ½

is the eigenvector matrix for OI_/OU evaluated at some symmetric average of Uj,k and Uj+l,k (for

example, Roe average [13] for a perfect gas and generalized Roe average of Vinokur [14] for real

gases). The values

_- - , - + . (6b)
2 (7)j,k +' gj+, 2 Jj+,,k

Also (ki)j+½ = +(-_) and (kz)j+½ = +(_) J+½
J+½

are defined, for example, as

(6c)

V I<J /j-t-i -t-

The values _, _y, il_ and flu are evaluated by three-point central differences. Similarly, one can

define the numerical flux Gj,k+ ½ in this manner.

Here the form of _'j+ ½ can be divided into two types: (a) a spatially second-order syrnmetric

TVD-type scheme [6,24,25] in which the numerical dissipation terms are independent of the sign of

the characteristic speeds and (b) a spatially second-order upwind TVD-type scheme [19,5] in which

the numerical dissipation terms depend on the sign of the characterislic speeds.

The elements of the (_j_ _ in the _-direction denoted by (_b_+½)s for a spatially second-order

synunetric TVD-type scheme [6,12] are

The value a_+ ½ is the characteristic speed a t for OFIOU evaluated at the same symmetric average

between Uj,k and Uj+l,k. The function _b is

Izl I_t >_6, (75)

Here _(z) in equation (7b) is an entropy correction to lzl where _l is a small positive parameter.

For problems containing simple unsteady shocks, _l is set to zero in most of the computations



since entropy-violating phen_i_ena occur only for steady or nearly steady shocks. For steady-state

problems containing strong shock waves, a proper control of the size of 6z is very important, especially

for hypersonic blunt-body flows. The choice of 61 is also highly dependent on the Mach number and

geometry of the physical problem. For the current numerical examples, the parameter 61 is set to be

t See reference [12] or section III for a discussion.a function of a_ and %.

Examples of the 'limiter' function Q_+ ½ can be expressed as

Q_+_ : minm°d(aZ_-21'az_+x)_-: + miumod(o_+ ½, a_+])- ' (7c)

(Td)

(7e)

The minmod function of a list of arguments is equal to the smallest number in absolute value if the

llst of arguments is of the same sign, or is equal to zero if any arguments are of opposite sign. Here
O 1

j+ ½ are elements of

%+_ = Rj+_(us+,,_ - v_,_). (8)

The elements of the _lij+] in the _-direction denoted by (¢_+])tr for a spatially second-order

upwind TVD-type scheme [19,5,12] are

(9a)

where
(g_+l ! t czI , ¢ 0- g_)/%+} _+_

(9b)
0 _t = 0

S+_

t used in calculations areExamples of iimiter function gj

' = minmod(o_ ½,c,_._) (9c)gs

5 3-2 3 -I-'- 2

gj_= _ _ +6] + _+_ ½) + (. )" )_

' = minmod(2.__ 2a_+ _(c_ + a t. _)) (9f)as i' _' -_ :-

' [O, min(2[a:+ ½ o- -]g./= S.max [,S-c_( _),nfin([a_+_[,2S.c_ _) ; S=sgn(a_+½). (9g)

Here 6 is a small parameter. In practical calculations 10 -r <_ 6 <_ 10 -s is a commonly used range.

MUSCL Approach Using an Approximate Riemann Solver: The numerical flux function Fa+ ½._ for
a MUSCL type approach, together with Roe type of approximate Riemann solver, for an upwind

scheme as described in Yee [26] and Yee & Shinn [2] can be expressed as



(lOa)

The values F(U_+½) and F(UL+½) are the flux function F evaluated at U]_+½ and uL+½ respectively,

with

V_+½ = Uj+,,_ - _[(1 - _)A_+] + (1 + _)A_+½] (10b)

1
ujL+½ = Uj,k + _[(1- _)A__½ + (1 + _)A_+½] (10c)

where _ discussed below, is a parameter to control the spatial accuracy of the scheme. The Umiters

A j+ ½ and A j+½ can be expressed as

as-_½= n_nmod(%+½,Z%__)

A j+ ½ = minmod (A j+ ½, fib j+ ])

with

minmod(z,3y) = sgn(z), max{O, min[Izl,sgn(z)" 3y] }

and 3 =
1-_'

(9) except the arguments are now the At+ ½ instead of (_S+ ½"

The Vector Rj+ ½ is the eigenvector of A evaluated at some synmletric average of/_

i.e.,

(lOd)

(lOe)

(lOf)

where AS+ ] = Us+l,k - [_,k. For _ = -I, AS+ ½ and A:+½ can be the same limiter as

and uL+½;

A

and the elements of 'I'd+ ] are

^ R

= ¢(a_+½ ½)aS÷

where.gain _+ _ a.d _',÷½are evaluatedat _ome_y_metricaverageof _'_ ½and _

_+] atlU n_= _ j÷½,vj_+½)

and

(lOg)

(1Oh)

(lOi)

^ ^-' (U_+ -uL_). (lOj)aS+ ½ = R j+ ½ ½ _

Here the spatial order of accuracy pertaining to the scheme with the limiter not present (i.e.,

remove the tildes from equations (10b,c)) is determined by the value of 7- For example, if _ = -1

the scheme is fully upwind and if_ = 0 it is Fromm's scheme. When _ -- 1/3 the scheme is third-order

and when _ = 1 it is the regular three-point central difference scheme.

MUSCL Approach Using Flux-Vector Splittingx.. The numerical flux function Fj+ ½,k for a MUSCL-

type approach, together with flux-vector splittings [8] referred as the TVD flux-vector splitting

method in this paper can be expressed as

8



i

i =

E_

-(u§ + )] (11)½

where Fi(U_n_) are evaluated using either the Steger-Warming type [16,181 or van Leer type [17,181

flux-vector splittings. The vectors U_ ½ and UjL ½ are the same as in equations (10b,c). The quantity
R

F-(Ujn+ _) is the portion of the flux F with negative eigenvalues evaluated at U_.+½.

The operations count between (6)-(9) and (10,11) is within 30% for a perfect gas. However,

due to an extra evaluation per dimension in the curve fitting between the left and right states in

an equilibrium real gas for (10,11), additional computation is required for the MUSCL approach.

The slight advantage of (10,11) over (6)-(9) is that (10,11) can be spatially third-order accurate.

However, experiences with the third-order case (7 = 1/3) do not show a very visible improvement

over the second-order case for problems with discontinuities. Part of the reason is that all TVD-type

schemes reduce to first-order at points of extrema regardless of the order of accuracy at smooth

regions. Also, because of the similarity in shock resolution and yet higher operations count for

real gases and nonequilibrium flows of the MUSCL over the non-MUSCL approach using Roe type

approximate Riemann solver, efforts are concentrated only on the nomMUSCL formulation. At

present no outstanding advantages or disadvantages between these formulations for a perfect gas

have been observed. Further investigation is required along this line before a clearer comparison can
be drawn.

2.3 A Conservative Linearlzed Implicit Form For Unsteady and Steady-State Calcula-
tions

To solve for U n+l in (5) one normally needs to solve a set of nonlinear algebraic equations itera-

tively. One way to avoid this is to linearize the implicit operator and solve the linearized form by

other means. Following the same procedure as in references [4-6], a conservative linearized alter-

nating direction implicit (ADI) form of (5) for the numerical fluxes (6) and (10a) can be written
as

1 [ ]At0 Ht A¢0 H_ E*- A¢ _ _? A"I+ 1+_ j+_,k l+w j-_,k l+w j+½,k _-_,k l+w

+ A02,;1

1"0 H" 1"0 Hi?k____ E ,_ -_ E °,
I+ l+w j,k+} l+w

g-+1= t?°+ E-,

where

The nonstandard notation

E" = 4(?";

1

1 ^

Ht , kE * 1 ^ ° fl t ,kEO ]j+_, = _[AJ+I,kEj+,. k- j+½

_ 5- ]j,k+ ½ j,k- }

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)



is used, and 12_ i -E*, n"_+ _,k j,k+ ½E can be taken as

fl _ a kE *=Rj+½,kdiag[_b(a(+½_]t, a ,J -1 • _ •Rj+½,k(Ej+l.k Ej,k)J+_,

f_,7 E , -1

(12g)

(12h)

Here Aj+_.k, Bj,_+I are Jacobians of/_ and 5 evaluated at (j + 1, k) and (j,k + 1). The value
n f_n+l An

Ej,_ = "_j.k - U_,k. The expression diag(z l) denotes a diagonal matrix with diagonal elements z I.

The nonconserverative linearized implicit form suitable for steady-state calculations [4] is also

considered. Numerical study indicated that the latter form appears to be slightly less efficient in terms

of convergence rate than the linearized conservative form (12)' This conservative linearized implicit

operator as well as the nonconservative linearized implicit operator (both suggested in reference [4])

for 8 = 1, w = 0 was renamed two year later by Barth [27] as the approximate Jacobian linearization.

To compute (12g,h), a triple matrix multiplication of dimension (4 × 4) has to be performed at every

grid point. For steady-state applications, one can simplify (12g,h) as

f_+½,kE = M_I(Ej+,,k - Ej,k)

ft,,k+ ½E = M,,I(Ej,k+, - Ej,k)

(13a)

(13b)

The scalar values M_ and M, are

M_=max¢(a(.1) (13c)
l 2t2

M,=m_x¢(a_+½) (13d)

and I is the identity matrix. Note that (13a,b) involve scalar multiplication only. The solution using

(13) is still second-order (or third-order) accurate after it reaches steady-state. Other linearized
implicit forms can be found in references [4-6].

2.4 General Assumptions and Limitations on the Numerical Studies

The present study is by no means an exhaustive investigation. There are additional elements and

parameters (other than the ones considered here) in the algorithm itself as well as in the physical

problem, such as flow type and geometric complexity, that can affect or interfere with the performance

of the numerical scheme. Even within the numerical issues listed in section I, the study is limited

to a sampling of the parameter range for the time-step size or CFL number and the form of 61 in

(7b). In particular, various strategies to speed up and stabilized the start-up solution from freestream
conditions for steady computations have not been investigated. What is discussed here is intended to

give interested readers some guideline for the use of the algorithm and to shed some light for further

study and improvement of the scheme and the development of better ones. All of the numerical

studies discussed in the subsequent sections rely on the following assumptions and considerations:

1. Although the recommended finite volume formulation (6) closely mimics the regular finite

volume formulation for two dimensions, the results obtained in this report used a slightly different

formulations than (6). In particular, three formulations (hereafter referred to as the pseudo finite
volume formulations) for the non-MUSCL schemes were investigated and are as follows
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'[ ]/ (14a)

with the corresponding quantities ((x)j+½, Jj+½ and (kl)5+½ of equations (6b,c) express as

1 1
(14b)

i

|

I
i'
!

and

and

+
, (14c)

- ,[ ]/Fi+½, k = _ (_,F + _yG)j,k + (_,F + _yG)j+l,k + Rj+½"I_j+½ dj+{ (15)

- 1[ _'j,k+Rj+½ /Jj+½] (16)Fj+½,k = _ FJ+',_: + '_j+½ •

Here Jj+] and kl in equations (15) and (16) are the same as (14b,c). For highly skewed grids and
nonuniform flows, equations (6) and (14) are preferred over (15) and (16). However, (14) and (15)

do not preserve freestream whereas equations (6) and (16) do. All of the results present in section V

use (15). One of the blunl-body cases was rerun with equation (6) and (14)-(16) and no noticeable

difference was observed. We expect all of the conclusions on the behavior of (14)-(16) to be carried

over to equation (6), since all of the exaanples use mildly clustered yet quite regular and nearly

orthogonal grids.

In two dimensions the present pseudo finite volume fornmlations can be made 'truly' finite volume

by a slight modification of equations (14)-(16); i.e., on the treatment of kl and Jr+½" However,
the situation is different in three dimensions where finite vohime formulations depart from finite

difference formulations. See reference [28] for a discussion.

2. The numerical results and conclusions are for the non-MUSCL approach and for the particular

flow type and geometry specified with a sampling of a narrow range of Mach numbers and time steps.
Results for viscous flow calculations are based on the shock wave dominated thin-layer Navier-Stokes

equations for laminar flows.

3. The numerical boundary condition treatments are the same as in references [5,29,30] for the

inviscid flow and as in reference [21] for the viscous flows. Studies [31] showed that proper treatment

of numerical boundary conditions has a major impact on the stability and convergence rate of the

scheme. Therefore the types of boundary condition treatment used here reflect on the performance

of the stability, accuracy and convergence rate of the present algorithm.

•4. For steady-state computations, the convergence rate not only depends on all of the elements and

parameters (to be discussed shortly), but more importantly also on the type of grid associated with

the computation. Studies show that, in general, a coarse nearly uniform orthogonal grid converges

1-3 times faster than a similar finer grids, and possibly an order of magnitude or more faster than

highly clustered or skewed grids. What will be presented in section V represents fairly uniform to

mildly clustered grids. Most of the grids used for the numerical study were not very coarse; thus the

number of iterations quoted is naturally higher than its coarse grid counterpart.
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5. For thenon-interfering blunt-body flows, the convergence rate and behavior of the symmetric

and upwind TVD-type schemes are very similar. However, for the interfering blunt-body flows

containing slip or shear surfaces, the upwind scheme produces sharper weak solutions. Consequently,
all of the illustrations and conclusions discussed in this paper are for the upwind scheme using limiter

(9c). Other llmiters can produce sharper discontinuities but are not as robust as limiter (9c). See
section V or reference 12 for a discussion.

6. Research on real gas effects on the performance of the proposed scheme is only in the preliminary

stages. All of the illustrations and conclusions for real gases are for invsicid non-interfering blunt-

body flows. Study of viscous real gas flows is in progress.

7. For steady-state computations using the backward Euler time differencing (0 = 1, w = 0), a

local time stepping procedure similar to [30,32] was used. However, in comparing the convergence
rate with the three-point backward differentiation time differencing (0 = 1, w = 1/2) for the viscous

flows, a constant time step was used.
s

Other considerations such as reducing ADI factoring error, using multigrid, relaxation or conjugate

gradient methods as an alternative to ADI, using local grid refinement to enhance resolution, etc.,
are also sources of improvement to algorithm (6-16). These items and the development of better

algorithms are the subject of on-going research.

III. Enhancement of Stability and Convergence Rate for Hypersonic Flows

In reference [1], some elements and parameters which can affect the stability and convergence rate

in high Mach number cases but have negligible effect in low Mach number cases for steady-state
inviscid blunt-body flows were identified. The current study indicated that the same elements and

parameters can affect the stability and convergence rate at hypersonic speeds for viscous computa-

tions as well. They are as follows: (1) the choice of the entropy correction parameter 61, (2) the choice

of the dependent variables on which the limiters are applied, and (3) the prevention of unphysical

solutions during the initial transient stage.

1. For Mach number ranging from 1.2 to 15, numerical experiments for one- and higher-

dimensional unsteady flows containing unsteady shocks show that the second-order explicit TVD

schemes [29,12,11] are insensitive to the entropy correction for 0 <_ 61 < 0.1. In most cases 61 = 0
was used. For 0.1 < 61 < 0.25, there is a possibility of improving stability in the sense of allowing a

higher CFL number at the expense of a slight smearing of the discontinuities. However, for unsteady

complex shock wave interactions, a small positive 61 or a variable 61 (to be discussed) can help
stabilize the time-accurate implicit algorithm (12).

For subsonic to low supersonic steady-state NACA 0012 airfoil computations [5,6], the resolution
of the shock waves was found to be quite insensitive to 0.1 < 61 < 0.125 and a constant value seems

to be sufficient. However, for hypersonic flows, especially for blunt-body flows, a constant 6_ or

a variable 61 suggested by Harten and Hyman [33] was found to be insufficient, but a variable 61

depending on the spectral radius of the jacobian matrices of the fluxes is very helpful in terms of

stability and convergence rate. In fact, a proper choice of the entropy parameter 61 for higher Mach

number flows not only helps in preventing nonphysical solutions but can act, in some sense, as a

control of the convergence rate and of the sharpness of shocks and slip surfaces (or shear layer in

viscous flows). The smaller the 61 that is used, the slower is the convergence rate. The larger the
61 that is being used, the larger is the numerical dissipation being added. However, 61 cannot be

arbitrarily large.

12



For the present blunt-body steady-state calculations with Mach numbers M > 4, the initial flow

conditions at the wall are obtained using the known wall temperature in conjunction with pressures

computed from a modified Newtonian expression [34]. Also, for implicit methods a slow startup

procedure from initial conditions [30] is necessary. Most importantly, experience indicates that if one

sets/fi in equation (Tb) as a function of the velocity and sound speed, i.e.,

= + L,,s+ l+ (17a)

= + Ivk+ l + (17b)

with 0.05 <_ _ < 0.25, then blunt-body flows for 4 <_ M < 25 appear to be stabilized and nonphysical

solutions are less likely to occur. Equation (17) is written in Cartesian coordinates. In the case of

generalized coordinates, the u and v should be replaced by the contravariant velocity components,
and one half of the sound speed would be from the _-direction and the other haft would be from

the rl-direction. For implicit methods, it is very important to use (17) in _b(z) on both the implicit

and explicit operators since in a two-dimensional hypersonic flow field consisting of a mixture of

subsonic and supersonic regions with Mach number ranging from 0 to hypersonic speeds, an entropy

parameter like (17) is nonzero in all of the regions. The entropy parameter (17) seems to work

well for blunt-body flows but whether this is also the right choice for configurations other than a

blunt-body shape is an open question.

For unsteady hypersonic blunt body complex shock wave interactions, the entropy parameter

(17) can help stabilize the time-accurate implicit algorithm. For most of the viscous and inviscid

calculations shown, unless otherwise indicated, _"is set to 0.125.

2. Higher-order TVD schemes in general involve limiter functions. However, there are options

in choosing the types of dependent variables when applying limiters for systems of hyperbolic con-

servation law, in particular for systems in generalized coordinates. The choice of the dependent

variables on which limiters are applied can affect the convergence process. In particular, due to

the nonuniqueness of the eigenvectors Re÷ ½, the choice of the characteristic variables on which the
linfiters are applied play an important role in the convergence rate as the Mach number increases.

For moderate Math numbers, the different choices of the eigenvectors have a negligible effect on the

convergence rate. However, for large Math number cases, the magnitudes of all the variables at the

jump of the bow shock are not the same. In general, the jumps are much larger for the pressures

than for the densities or total energy. Studies indicated that employing the form R j+½ such that
the variation of the o are of the same order of magnitude as the pressure would be a good choice for

hypersonic flows. The form similar to the one used by Gnoffo [35] or Roe and Pike [36] can improve
the convergence rate over the ones used in references [37,38]. In all of the computations shown the

form Rj+ _ used is the same as in references [37,38] except for an extra factor of 1/c]+½. With this

extra factor the variation of the a are in fact proportional to the pressure. Other forms of R j+
have not been investigated.

3. Due to the large gradients and to the fact that the initial conditions are far from the steady-

state physical solution, the path used by the: implicit method can go through states with negative

pressures if a large time step is employed. A convenient way to overcome this difficulty is to fix a

minimum non-negative allowed value for the density and the pressure. With this safety check, the

scheme allows a much larger time step and converges several times faster.

In addition, since the Roe's average state allows the square of the average sound speed c_+ ½ to lie
2

and : the average state c_+ ½ might be negative even though c_outside the interval between cj Cj+l,
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2
and cj+ 1 are positive during the transient stage when the initial conditions are far from the steady-
state physical solution. In this case, we replace c2 by max(c_, 1, min(c_, _j+½ --_ ci+1)).This lattersafety

check isinparticularhelpfulforthe symmetric TVD algorithm(7).

IV. Behavior of the Algorithm with Different Temporal Differencing

It is emphasized here that sincethe method (12) is written in the 'delta'formulation,either

the backward Euler (first-order)or the three-pointbackward differentiation(second-order)time

dlscretizationsrequirethe same amount ofstorageand a similaroperationcount.Therefore,the main

considerationbetween the two time-differencingmethods istheirrelativestabilityand convergence

rate.

Inviscid Unsteady Flows: For inviscid unsteady flows, the explicit TVD-type methods [29,12,11] are

more efficient than the second-order implicit method (12). Unless the inviscid problem is stiff, there

is no advantage of employing an implicit method for inviscid unsteady flows.

Inviscid Steady Flows:. The backward Euler implicit method has a better stability and convergence

rate than the three-point backward differentiation implicit method. Also a local time-stepping pro-

cedttre can speed up the convergence rate for the former time-differencing method whereas the same

procedure has little effect on the convergence rate when compared with a fixed time step procedure

for the latter time-differencing method.

Viscous Unsteady Flows:. Computations on the unsteady viscous flows mainly use the second-order

time differencing since a larger time step can be used compared with the temporally first-order im-

plicit method. Due to the highly clustered viscous grid used in contrast to their inviscid counterpart,

solving a viscous unsteady complex shock interaction using an explicit TVD-type method is not

practical due to its inherent time step restriction. In certain cases, the time step might be an or-

der of magnitude smaller than the implicit counterpart. A nmre detailed study of unsteady viscous

hypersonic blunt-body flows with an impinging shock is reported in reference [22].

Viscous Steady Flows: At present there is no detailed viscous steady flow study comparing the first-

order time differencing using a local time-stepping approach with the second-order time differencing

using a constant time step approach. But the general trend is that the second-order time differencing

has slightly better stability and convergence rate than the former one. In particular, a summary using
a fixed time step approach comparing the two time-differencing algorithms is discussed in section V.

V. Numerical Results

The various numerical aspects discussed in sections II/-IV are complimented by a variety of steady

and unsteady, viscous and inviscid hypersonic blunt-body flow computations in this section. Six

types of blunt-body test cases are illustrated in figures 1-11. Test cases 1 and 2 are inviscid, perfect

and real gas, non-interfering blunt-body flows. Test case 3 is a steady inviscid, perfect gas blunt-body

flow with an impinging shock. Test cases 4-6 are viscous steady and unsteady perfect gas blunt-body

flows with and without impinging shocks.

Comparison Among the Various Linearized Implicit Methods: For the implicit operator, nmnerical

experiments show that the linearized conservative form (12) converges slightly faster than the lin-

earized nonconservative form [4] for both viscous and inviscid flows. It seems also that when the

freestream Mach number increases, the convergence rate of the linerarized conservative form (12)

is better than a simplified version which replaces f_ and v_+½,k f/j,k+ ½ of (12g,h) by maxt ¢(a_+½)
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and maxt ¢(a_+ § ) times the identity matrix (equation (13)). This is especially true for viscous flow

computations. Due to the experience gained by the transonic and the inviscid hypersonic study, no

detailed computations using the linearized nonconservative form were performed for viscous steady

flow. All of the results and discussions for the viscous computations are based on the conservative
linearized form.

Another area of investigation is that for viscous computations, the Jacobian of the visc5us terms

on the implicit operators are rather expensive to compute. To maintain the spatial order of accuracy,

for sure these terms are needed for unsteady flows. Whether the omission of these terms has a major

impact on the stability and convergence rate of the algorithm for steady-state calculations is not

known. Therefore, an investigation has been made on the difference in the convergence rate for the

algorithm with or without the viscous terms in the implicit operator. A brief summary is included

in the following subsection.

Choice of Limiters: Unlike flows with transonic and low supersonic shock waves, problems containing
strong hypersonic shock waves are more sensitive to the treatment of limiters. Using the more

diffusive limiter (7c) or (9c) turns out to be more stable than other more compressive ]]miters. In

terms of shock resolution for both the symmetric and upwind TVD-type of schemes, the sequences

written in equations (7c)-(?e) and (Pc)-(Pg) are in order of increasing accuracy. On the other hand,
these sequences are in order of decreasing stability and convergence rate. The more compressive

limiters like (Pf) and (Pg) have a very low stability and slow convergence rate for steady flows. The
same conclusion applies for unsteady flows where the more compressive limiters have a very restricted

time step limit. From our experiences, it is not advisable to use (9f) and (Pg) for complex steady

shock wave interactions. In particular, limiter (Pg) should be used only for the linear fields (i.e., for

the u and v characteristic fields in the _- and y-direction respectively). See reference [12] for more
details.

Convergence Rate of Explicit and Implicit TVD-type Schemes for Real Gas Flows: The five differ-

ent second-order TVD methods previously studied [I1] in one dimension yield very similar shock

resolution for the blunt-body (non-interfering case) problem. In particular, for an inviscid blunt-

body flow in the hypersonic equilibrium real gas range, the explicit second-order Harten and Yee,
and Yee-Roe-Davis type TVD schemes [6,24,25] using the generalized approximate Riemann solver

[13] produce similar shock-resolution but converge slightly faster than an explicit second-order van

Leer type scheme using the generalized van Leer flux-vector splitting [11].

The freestream conditions for the current study are Moo = 15 and 25, p0¢ = 1.22 × 103 N/m 2,
poo - 1.88× 10 -2 kg/m 3, and Too = 226°K. Figure 1 shows half of the 61 y 33 grid used for the blunt-

body problem. For the Moo = 25 case, the shock stand off distance is at approximately fourteen

points from the wall on the symmetry axis. The relaxation procedure for the explicit methods

employs a second-order Runge-Kutta time discretization with a CFL of 0.5 (solution not shown).

The parameter 6" is set to a constant value of 0.15. Pressure and Macb number contours converge

and stabilize after 3000-4000 steps but the convergence rate is much slower for the density (with a

2-3 order of magnitude drop in L,-norm residual). The bow shock is captured in two to three grid

points. The curve fits of Srinivasan et al..[39] are used to generate the thermodynamic properties of
the gas.

The same flow condition was tested on the implicit scheme (I2) and the convergence rate was
found to be many times faster. Figures 2 and 3 show the Math number, density, pressure and

contours computed by the linearized conservative ADI form of the upwind scheme (12) with the

first-order backward Euler (_ = 1 and _v = 0) for Mach numbers 15 and 25. Figure 4 shows the
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slightadvantage of the convergencerateof the linearizedconservativeimplicitscheme (12)overthe

linearizednonconservativeimplicitscheme (with 8 = 1, _ = 0 and a fixedCFL of 15) suggestedin

reference[4].The convergencerateand shock resolutionforthe symmetric TVD-type scheme (12)

behave similarly.For Moo = 15 case,the g2-norm residualstagnatedaftera drop of fourordersof

magnitude.

In general, for a perfect gas with 10 _< Moo _< 25 and a not highly clustered grid, steady-state

solutions can be reached in 600-800 steps with 12 orders of magnitude drop in the L2-norm residual.

However, the convergence rate is many times slower for the real gas counterpart. Figure 5 shows the

convergence rate for a perfect gas compared with a real gas computation with a fixed CFL of 50. Note

that the scale of the ordinates used in figure 5 for the perfect gas and the real gas are not the same.

The freestream conditions for the real gas study are the same as figure 3. An important observation

for the behavior of the convergence rate for the Mach 15 real gas case is that the discontinuities of

the thermodynamic derivatives which exist in the curve fits of Srinivasan et al. [39] might be the
major contributing factor. This is evident from figures 2d and 3d and from a comparison with the

convergence rate for the perfect gas. Another contributing factor is that the curve fits are accurate
only for temperatures up to 6000°K. Since the temperature in this case is slightly above 6000°K,

there is an uncertainty in the accuracy of the computed results. Further improvement of the existing

curve fitting procedure is needed.

Inviscid Impinging Shock Computations: Figures 6 and 7 show the schematic of the computational

domain, the Mach contours and L2-norm residual computed by the implicit upwind scheme (12) (with

0 = 1, w = 0) of an inviscid shock-on-shock interaction on a blunt body with radius Rt and thickness

D = 2Rt in the low hypersonic range. Higher inviscid hypersonic Mach number computations using

the proposed scheme are also possible but are not shown here. Some viscous and inviscid studies on

flow fields of this type were reported in references [34,40-42]. This flow field is typical of what may be

experienced by the inlet cowl of a hypersonic aerodynanfic vehicle. The freestream conditions for this

flow field are the freestream Mach number Moo = 4.6, the freestream temperature Too = 167°K, and

7 = 1.4 for a perfect gas. An oblique shock with an angle of 20.9 ° relative to the free stream impinges

on the bow shock. Various types of interactions occur depending on where the impingement point is

located on the bow shock. As shown by the Mach contours ranging from 0 to 4.55 in increments of

0.05, the impinging shock has caused the stagnation point to move away from its undisturbed location

at the symmetry line. The surface pressures at the new stagnation point can be several times larger

than those at the undisturbed location of the stagnation point. In addition, a slip surface emanates

from the bow shock and impinging shock intersection point and is intercepted by a shock wave which

starts at the upper kink of the bow shock. The interacting shock waves and slip surfaces are confined

to a very small region and must be captured accurately by the numerical scheme if the proper surface

pressures are to be predicted correctly. The 77 × 77 grid used and the convergence rate computed

by the implicit scheme (12) are shown in figure 7. Though the pattern of the flow is significantly

more complicated than for the previous cases, the convergence rate remains quite satisfactors: As

shown in figure 6 at the inflow, all of the inviscid and viscous interfering blunt-body computations

start with the appropriate freestream and oblique shock wave conditions as boundary conditions.

Viscous Steady Computations With or Without Impinging Shock':. To keep the study tractable only
two types _ flow fields were chosen. The first is the viscous hypersonic blunt-body flow

at Moo = 8.03 and Too = 122.1°K with a laminar Reynolds number of 387,750 based on the body

diameter for ideal gases. The second problem (with the same flow conditions) is similar to the
inviscid shock-on-shock interaction where an oblique shock impinges on the bow shock of the blunt

body at an angle of 19 ° relative to the free stream. A more detailed flow field computation on the six

types of shock patterns categorized by Edney [43] is presented in reference [21]. For the convergence
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study only one type of interaction, namely what is called the Type III interaction, is considered.
Also the study is restricted to only one type of time stepping sequencing and only one value of the

entropy correction parameter. The computational meshes (not shown) consist of 181 points in the
circumferential direction and 91 points in the normal to the body direction and are highly clustered

in the wall region to resolve the viscous layer.

At this point, it is important to point out that the time step sequence used for the viscous steady

flows is very different from the inviscid study. Most of the inviscid computations use the same initial

time step input together with a local time-stepping procedure throughout the entire iteration process.

The time step sequence chosen for the viscous steady calculations is based on experience with a wide

range of hypersonic flow simulations and consists of doubling the time step every 100-400 time steps
until the specified time step is reached. The initial time step is At = 0.001 which corresponds to a

maximum Courant (CFL) number of 10 to 20 for the current problem and grid size. Larger values of

the initial time step usually prevent convergence. The four specified time steps considered range from

0.001 to 0.008 with the corresponding CFL numbers ranging from 20 to 200. Much larger maximum

CFL (or specified time step) numbers are possible but do not improve the convergence rates. The

value of the entropy correction parameter was fixed at _ = 0.15, again based on experience with a

wide range of hypersonic flow field simulations.

The results of the blunt-body steady viscous flow obtained with the temporally second-order

accurate algorithm (12) (hereafter referred to as the full matrix form) are shown in figure 8. Here

algorithm (12) for the viscous computations means the appropriate three-point central differences of
the viscous terms are added to the explicit and implicit operators of (12). Depicted are the Mach

contours ranging from 0 to 8 in increments of 0.1 and the entropy contours normalized with the

freestream value and ranging from 0 to 6.4 in increments of 0.1. The final view in figure 8 is the ])_

norm residual history. The residual drops to machine accuracy (10 -14 ) in less than 3200 steps. The

corresponding results using the same algorithm (12a)-(12f) together with (13) (hereafter referred as

the diagonal form) are illustrated in figure 9. No noticeable difference in the numerical results is
observed in the Mach number or entropy contours. However, the residual curves are very different.

The residual for the diagonal scheme reached a plateau of 5 × 10 -s at 1500 steps and stayed at that
level.

A more difficult flow field computation is depicted in figures 10 and 11. The results using the

same second-order time accurate full matrix algorithm are shown in figure 10. The convergence rate

is slower than for the blunt body non-interfering case but is still satisfactory. The residual dropped

seven orders of magnitude in 3000 steps. In both of the blunt-body flow with or without impinging

shocks, steady-state can be reached within 1000-1500 iterations. The extra iterations are needed

only to bring the residual to a lower level but no change in the coutour plots or surface pressures

at least to within 3-4 digits of accuracy is observed. However, the results shown in figure 11 using

the diagonal scheme are not satisfactory. The residuals dropped less than two orders of magnitude

in 3000 steps. The noise appearing on the Mach number and entropy contours in the upper portion

of the bow shock using the diagonal form of the scheme indicates that the algorithm has a problem

reaching the converged steady-state solution.

All of the results obtained for figures 8-11 have the viscous terms included in the implicit operator.

If the viscous terms are not included in the impicit operator, then the full matrix scheme becomes

unstable for At >_ 0.004, whereas the diagonal scheme exhibits no change in convergence rate.

In summary, front the point of view based on the L_-norm of the residuals, the best convergence

rates were achieved by the full matrix form with the viscous terms included since it allowed the

residual to drop to machine accuracy (10 -14 ). The diagonal form (13) did not fare too well. Although

there is a substantial savings in operation count per iteration, the £2-norm of the residual never
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dropped below 10 -6 for all the time steps considered. Moreover, the inclusion of the implicit viscous

terms had little effect on the diagonal form of the scheme but is important for the full matrix form of

the scheme. One way of taking advantage of the low operations count of the diagonal form (without

the implicit viscous terms) is to use the scheme as an efficient way of obtaining a rough solution

(from freestream) for the initial input to the full matrix algorithm. The temporally second-order
time-differencing scheme had a marginal but beneficial effect on the convergence rates when compared

with the temporally first-order scheme.

Viscous Steady and Unsteady Mach 15 Computations With Impingin 9 Shock': Figure 12 illustrates

the shock resolution of unsteady and steady thin-layer Navier-Stokes computations by the second-

order time-accurate, full matrix algorithm (12). This steady test case is similar to the previous

impinging shock study except the freestream Mach mtmber is 15, the impingement shock angle
is 22.75 °, the freestream temperature is Too = 255.6°K, and the Reynolds number based on the

diameter is 186,000. Shown are the Mach contours from 0 to 15 in increments of 0.1. For the

unsteady computation, the impingement shock at an angle of 22.75 ° relative to the freestream moves
downward across the bow-shock of the blunt body. The impingement shock velocity is 10% of the

freestream velocity (Moo = 15). Although the impingement shock locations for the unsteady and

steady computations are similar, the shock patterns are very different. A 241 × 141 non-adaptive

grid is used for both computations. A time step of 0.002 (equivalent to a maximum CFL of 48) is
used for steady-state computations whereas a time step of 0.0005 (equivalent to a maximum CFL

of 10-12 at the vicinity of the boundary layer and a CFL of I at the rest of the flow field) is used

for the unsteady computations. The steady-state solution can be reached in 1200 steps with a three
order of magnitude drop in the Lz-norm residual. More detailed study of the surface pressure and

heat transfer rate of these types of shock-on-shock steady and unsteady numerical simulations were

reported in references [21,22].

VI. Concluding Remarks

A two-parameter family of implicit time-accm'ate shock-capturing algorithms for hypersonic vis-
cous flows has been developed. The proposed algorithms are formulated in finite volume and pseudo

finite volume form and have been shown to be quite e,fficient and accurate for steady-state as well

as unsteady viscous and inviscid hypersonic complex shock interactions. Some numerical aspects of

these TVD-type algoritIuns that affect the convergence rate for hypersonic Mach numbers or real

gas flows but have negligible effect on low Mach numbers or perfect gas flows are identified. Im-

provements have been made to the algorithms to speed up the convergence rate in the hypersonic

flow regime. Even with the improvements, though, the convergence is in general slower for real gases

than for a perfect gas. The nonsmoothness in the curve fits of Srinivasan et al. may be a major

contributing factor in slowing down the convergence rate. Also, the convergence rate is, in general,
slower for viscous flows than for inviscid steady flows.
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